
Scaling geodata
with MapReduce

Nathan Vander Wilt

Background

I’m Nate, a freelancer — I do web, native, embedded development using Cocoa, Django, node.js, C/C++, from SQLite to Couch. Of all, I love
to talk about Couch the most :-)

Audience poll: who’s used Couchbase (or similar) “at scale” — tons of users?

Well, for better or for worse, the user in this user story is me. Here's how I turned almost ten years of personal geodata into something I can
relive in less than two seconds. I hope you'll find some of these ideas helpful when dealing with tens of thousands of users.

ON THE DOCKET:

•Views as “indexes”

•Basic location examples

•Geo Hacks

(pls to interrupt)

Gonna divide this up into three general chunks: make sure we’re all on the same page as far as concepts go, then dive into the main
examples. Finally we’ll explore at some interesting twists of the available features.

Feel free to interrupt at any time. I’d like to have some discussion between each of these main sections, so you can also save questions for
then.

Views as “indexes”

Views as “indexes”

Database

(Everything Ever)

efficient filtered lookup

efficient filtered lookup
efficient filtered lookup

What do I mean by “indexes”?

Efficient lookup of data, extracted from documents. Think of a word index in a book, or the topical index of a “real” encyclopedia set.

Views as “indexes”

Database Index

“map” function emits

With Couch you have full control. Your code defines which terms — “keys” — go into this index.

GeoCouch for indexing

Spatial
Index

Using R-trees as a 2-dimensional index to speed bounding box queries.

GeoCouch for indexing

Spatial
Lookup

GeoCouch for indexing

!

Drawbacks if a lot of points inside bounding box...

MapReduce indexing

B-tree
index

Use B-trees as a index to speed 1-dimensional lookups

MapReduce indexing

B-tree
lookup

…

efficient “start/end” range queries

MapReduce indexing

B-tree
reduction

1 4 2 3 1

as well as grouped “reduce” queries!

View “indexes” as...

Database Index
PROJECTION

Because Couch exposes its index keys directly, you can imagine the indexes as “projections” of data viewed from different perspectives.

“Indexes” as projections

http://en.wikipedia.org/wiki/File:Axonometric_projection.svg

What do I mean by projection?

Example of 3D onto 2D: pictures.

“Indexes” as projections

Image: USGS

Example of n-D onto 1-D: map functions

Views as projections

n-
dimensional

data

single dimension view

Example of n-D onto 1-D: map functions!
Imagine each “aspect” of your data as its own dimension.

We’ll focus back on this in the last section on Geo Hacks, but it’s helpful to keep in mind

PROJECTION

View “indexes” as...

Database*
(*index posing as...) Database

Because they’re sort of just a different “perspective” on your data, in all the examples ahead we’ll look at Couch indexes almost as databases
themselves.

Questions so far?

Basic location indexes

Location example #1

Where was I when...?

Location example #1

for each pt in doc:
 emit(pt.timestamp, pt.coord)

Map function

Location example #1

(Demo)

Location example #2

Where have I been?

Location example #2

for each pt in doc:
 emit(pt.timestamp, pt.coord)

Map function

for each value in reduction:
 avg += value.coord
 n += value.n || 1
return {avg, n}

Reduce function

Location example #2

(Demo)

Location example #3

What photos did I
capture in this area?

The reason I’ve been recording my location for so many years.

Location example #3

Image: http://msdn.microsoft.com/en-us/library/bb259689.aspx

emit([2,0,2,…])

?group_level=Z

Tiles, quadkeys

Location example #3

for each pt in doc:
 key = quadkey(pt.coord)
 emit(key, pt)

Map function

_count
Reduce function (basic)

Location example #3

(Demo)

Questions now?

Have I managed to confuse anyone by now?

Scalable geo hacks

Geo hacks -> scalable geo hacks.
Keep in mind that everything we’ve talked about so far will scale well. I have “only” a few million
location breadcrumbs — that’s a lot, but you might have many many more. The same index
trees that got me this far are designed to keep going farther.

Now we’re going to talk about some hacks: some I haven’t actually used yet, the next makes
your code uglier, and the last one adds cheating on top of that. But all of these “hacks” still have
some good scaling properties.

Hack #1

Geo: not just for geo

Hack #1

n-
dimensional

data

one-dimensional view

We talked about this: “projecting” an aspect of multi-dimensional data onto a 1-d sorted index.
But why not project onto a...

Hack #1

n-
dimensional

data
two-dimensional view!

2-d index!

Hack #1

0

2750

5500

8250

11000

2008 2009 2010 2011 2012

Time and altitude, e.g. when did I fly in 2009–2010

Hack #1

0

1

2

3

4

5

1 2 3 4

Camera and rating, e.g. clean up bad photos from recent cameras

Hack #1

Consider:

?bbox=…&limit=500

?bbox=…&count=true

Unfortunately, this does not provide a *sorted* index. GeoCouch is scalable in the sense that the
determining which objects are within the bounding box will stay fast, but the result set might be
manageable only when counting or limiting.

Hack #1

(No demo, sorry)

Hack #2

All log(n) you can eat

Hack #2

Map function (usual timestamp/location emit)

n = Math.log(values.length)
while averages.length < n:
 averages.push(another)
return averages

Reduce function

...

Hack #3

Out-of-the ordinary
location summary

Hack #3

…?

Averaging locations puts dots on places I’ve never actually been.

Hack #3

What might be more interesting is to pick good samples of actual locations I’ve been too.
“Representative” locations so to speak. What’s a good “representative” location? The most
common, ones with a lot of other points nearby, ones closest to that average we calculate?

Hack #3

Finally realized that it was actually the “outliers” that provided the most interesting answer to
“where have I all been”!

Hack #3

Map function

n = Math.log(values.length)
while outliers.length < n:
 outliers.push(another)
return outliers

Reduce function

...

using log(n) trick from before

Hack #3

Caution: RESULT IS “UNDEFINED”

This cheats.

Reduce function should be “commutative and associative for the array value input, to be able
reduce on its own output and get the same answer”

This is not really associative: the result depends on the internal tree structure. The points picked
are random/unstable.

Hack #3

(but is interesting anyway)

In this case, I’d rather have randomly picked but practically useful output data, than stable
“averages”.

Hack #3

(Demo)

Thanks!
(Any more questions?)

@natevw
http://exts.ch

